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The compaction dynamics of a granular media subject to a sequence of vertical taps made of fluid pulses is
investigated via molecular dynamics simulations. Our study focuses on three different levels: macroscopic
�volume fraction�, mesoscopic �Voronoï volumes, force distributions�, and microscopic �grain displacements�.
We show that the compaction process has many characteristics which are reminiscent of the slow dynamics of
glass forming systems, as previously suggested. For instance, the mean volume fraction slowly increases in
time and approaches a stationary value following a stretched exponential law, and the associated compaction
time diverges as the tapping intensity decreases. The study of microscopic quantities also put in evidence the
existence of analogies with the dynamics of glass formers, as the existence of dynamical heterogeneities and
spatially correlated motion of grains; however, it also shows that there are important qualitative differences, as,
for instance, in the role of the cage effect. Correlations between geometry and dynamics of the system at the
grain level are put in evidence by comparing a particle Voronoï volume and its displacement in a single tap.
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I. INTRODUCTION

When subject to vertical vibrations granular materials can
produce a variety of distinct phenomena, depending both on
the driving parameters and on the container properties. A
great deal of interest has been recently raised by the process
of compaction under successive vertical taps �1–5�. Experi-
ments �1,3,4� show that the density of a column of grains
submitted to vertical tapping increases slowly in time with a
law well-fitted by a stretched exponential �1� or logarithmic
function �4�, and that the characteristic compaction time
grows abruptly as the driving intensity decreases. These ob-
servations have suggested an analogy with glass-forming
systems, where the relaxation time diverges as the tempera-
ture is decreased; the analogy is corroborated by the fact that
concepts like frustration and free volume, which are com-
monly used to explain the slow dynamics of supercooled
liquids and other thermal systems, do also provide an insight
into the physics of powder compaction �3,6,7�.

However, contrary to supercooled liquids, granular mate-
rials are nonthermal systems as their typical energy scale, the
energy required to rise a grain of its own diameter against
gravity, is orders of magnitude larger than the thermal energy
kBT: each granular pack is in a mechanically stable state,
which lasts as long as there is no external perturbation.
Therefore even though the dynamics induced by a sequence
of vertical taps becomes slower and slower as the tapping
intensity decreases, important qualitative differences may ex-
ist between slow granular dynamics and glassy dynamics.

Here we investigate analogies and differences between
granular dynamics and glassy dynamics by performing mo-
lecular dynamics �MD� simulations of a granular system sub-
ject to a sequence of vertical taps where, in order to explore
a wide range of volume fractions, the system is tapped via

flow pulses as in the experiment of Schröter et al. �5�. We
investigate the evolution of macroscopic quantities �volume
fraction�, mesoscopic quantities �Voronoï volumes, force dis-
tributions�, and microscopic quantities �grain displacements�,
and we discuss how various static properties of a granular
pack change during compaction �8�. We found several analo-
gies between the compaction of granular media and the slow
dynamics of glass forming systems �9–11�, as the divergence
of the relaxation times, dynamical heterogeneities, and spa-
tially correlated motion; but we also show evidence of im-
portant qualitative differences, as in the role of the cage mo-
tion, which are put in evidence by the study of particle
trajectories.

The paper is organized as follows. Section II presents the
numerical model used. Then compaction dynamics, investi-
gated via the study of the time dependence of the volume
fraction, and of the diffusion coefficient at stationary, is dis-
cussed in Sec. III. The evolution of structural properties of a
compacting granular pack, the radial distribution function,
the distribution of Voronoï volumes, and the distribution of
interparticle forces is presented in Sec. IV. Section V dis-
cusses the compaction dynamics at a grain level, showing the
existence of dynamical heterogeneities and of spatially cor-
related motion of grains, and putting in evidence qualitative
differences in the particle trajectories of compacting granular
media and glass formers. Section V also presents a connec-
tion between geometrical �Voronoï volumes� and dynamical
�particle displacements� properties of the system. Finally, a
conclusion summarizes the main results and perspectives.

II. NUMERICAL MODEL

We run molecular dynamics �MD� simulations of N
=1600 monodisperse spherical grains of diameter d=1 cm
and mass m=1 g. Grains, under gravity, are confined in a
box with a square basis of length L=10 cm, with periodic
boundary conditions in the horizontal directions. The bottom*Email address: picaciam@na.infn.it
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of the box is made of other immobile, randomly displaced
grains �to prevent crystallization�. Simulations with four
times more particles in a system with a square basis of length
2L give the same results, so we exclude the presence of finite
size effect in our system.

Two grains in contact interact via a normal and a tangen-
tial force. The former is given by the spring-dashpot model,
while the latter is implemented by keeping track of the elas-
tic shear displacement throughout the lifetime of a contact
�12�. The model is the one described in �13� with a restitution
coefficient, e=0.8. We use the linear model instead of the
more realistic Hertzian model �14� as this latter is character-
ized by a coefficient of restitution which goes to zero as the
relative velocity of the impacting particles decreases �12�.
This feature makes computationally expensive the simulation
of a granular system reaching a mechanically stable state.

The system is immersed in a fluid and, starting from a
random configuration, it is subject to a dynamics made of a
sequence of flow pulses where the fluid flows through the
grains �see Fig. 1�, as in the experiment of Ref. �5�. In a
single pulse the flow velocity, directed against gravity, is V
�0 for a time �0; then the fluid comes to rest. We model the
fluid-grain interaction as in Refs. �15,16� via a viscous force
proportional to the fluid grain relative velocity: F fg=−A�v
−V� where v is the grain and V= �0,0 ,V� is the fluid veloc-
ity. The prefactor A=��1−�l�−3.65 is dependent on the local
packing fraction, �l, in a cube of side length 3d around the
grain, and the constant is �=1 Ns/cm �16�.

During each pulse, grains are fluidized and then come to
rest under the effect of gravity g. The system is considered to
be still when the kinetic energy per grains is below
10−5 mgd. All measures below are recorded when the pack is
at rest.

The dynamics of dry granular media subject to vertical
vibrations is determined by two parameters, the amplitude
and the frequency of vibrations. In the system we are inves-
tigating here there are also two parameters, the tap duration
�0 and the fluid velocity V.

III. DYNAMICS

A. Volume fraction

When subject to a sequence of flow pulses a granular
system compactifies �or expands� until it reaches a stationary
state which depends on the driving parameters �5�. Figure 2

shows the evolution of the volume fraction � �measured in
the bulk of the system� with the number of flow pulses for
systems subject to a tap dynamics with tap length �0
=0.03 s and various values of the fluid velocity V. Each
curve is obtained by averaging over 32 independent realiza-
tions. Similar curves are obtained with different values of �0.

The time evolution of the volume fraction is well-
described by a stretched exponential law,

��t� = �� − ��� − �0�exp�− �t/��c� , �1�

with c�1. This is in agreement with experimental results of
Philippe et al. �1,9,17�, which have investigated the relax-
ation dynamics of dry granular media subject to vertical taps
in a system with a height-to-width ratio similar to ours. On
the contrary Nowak et al. �3,4� have investigated a system
with a larger height-to-width ratio, finding logarithmic com-
paction.

As in previous experiments of both vibrated �1,3,6,18�
and fluidized �5� granular systems, when the tapping inten-
sity decreases the system compactifies more. This is clearly
illustrated in Fig. 3, where we show the dependence of the
volume fraction reached at stationarity on the fluid velocity V
for various values of the tap length �0. As one could have
expected the final stationary state depends both on V and �0.
However, it is possible to show numerically �19� that the
final state can be characterized by one thermodynamical pa-
rameter, supporting the idea of a statistical mechanics de-
scription of granular media at rest �9,20–22� originally pro-
posed by Edwards �23�.

B. Compaction time

The relaxation time � which appears in Eq. �1� is a mea-
sure of the number of flow pulses required by the system to
reach stationarity. The experiments of Ref. �5� have investi-
gated a range of parameters V ,�0 where the system reaches a
stationary state after few flow pulses. On the contrary, the
experiments of Philippe and Bideau �1� have investigated a
range of parameters where the compaction dynamics of the

FIG. 1. �Color online� We study the compaction process of a
granular media subject to flow pulses. During each pulse �tap�, of
duration �0, fluid flows with velocity V through the granular media.
Before applying a flow pulse we wait until the granular media
comes to rest.

FIG. 2. �Color online� Temporal evolution of the mean volume
fraction � for �0=0.03 s and the reported values of fluid velocities
V. The data obtained via simulations of larger systems �four times
more particles� evidence the absence of finite size effects. Dashed
lines are fit to a stretched exponential law.
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system is glass like. They report a relaxation time following
an Arrhenius behavior with the inverse maximum accelera-
tion of the pack, ��exp��−1�. In the system under investiga-
tion here the relaxation time also evidences the existence of a
glassy dynamics of the system, as it diverges with a power
law with decreasing fluid velocity,

� � V−� �2�

with ��1.17±0.04, as shown in Fig. 4 �for data with tap
length �0=0.03 s�. The same behavior is observed for differ-
ent values of the tap length �0.

C. Stationary dynamics

After having applied a long sequence of pulses up to
reach the stationary state, we have computed the mean
square displacement,

�r2�t�� =
1

N
�

i

N

„ri�t + tw� − ri�tw�…2, �3�

with ri�t� position of grain i after t taps, and tw waiting time
which depends on the driving conditions �tw�3��. From the

mean square displacement, shown in Fig. 5, we have ex-
tracted the diffusion coefficient D ��r2�t���Dt� which de-
creases with the fluid velocity as a power law, D�V�, with
the same exponent observed for the dependence of the relax-
ation time on the fluid velocity �Fig. 5�. This suggests the
existence of relation ��D−1 relating the compaction time
and the diffusion coefficient at stationarity, which is illus-
trated in the inset of Fig. 5 �lower panel�.

The mean square displacement evidences the absence of a
subdiffusive regime in the slow dynamics of granular media
subject to flow pulses, a signature of the cage effect in su-
percooled liquids. In Sec. V we will show that particles may
be constrained in a cage, but that the escaping time is too
small �few taps� in order to affect the mean square displace-
ment.

IV. STRUCTURE EVOLUTION

A. Radial distribution function

The radial distribution function g�r� is the probability dis-
tribution of finding the center of a particle in a given position
at a distance r from a reference sphere. Since it contains

FIG. 3. �Color online� Dependence of the volume fraction
reached at stationarity by a system subject to a sequence of flow
pulses of length �0 on the fluid velocity V. Lines are a guide to the
eye.

FIG. 4. The relaxation time � increases with a power law �Eq.
�2�� as the fluid velocity decreases.

FIG. 5. �Color online� Left panel: mean square displacement �in
the stationary state� for �0=0.03 s and fluid velocities �from top to
bottom� V=2.00, 1.25, 0.8, 0.40, 0.15, and 0.10 cm/s. Right panel:
the inverse diffusion coefficient �measured for those points in which
the diffusion regime is attained� diverges as a power law, D−1

=aV−� as the fluid velocity V decreases. Inset: relation between the
compaction time and the diffusion coefficient at stationarity.
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information about long range interparticle correlations, it is a
common tool in the characterization of packing structures.
Here we study how the radial distribution functions, which
we normalize as usual is such a way that g�r�→1 for r
→�, evolve during compaction.

Figure 6 �main frame� shows g�r� at different times dur-
ing compaction ��0=0.03 s, V=0.2 cm/s�; similar results are
found with different values of �0 and V. The first strong peak
at r=d=1 cm corresponds to the high probability of having a
neighbor in contact. This peak characterizes all dense sys-
tems of hard particles, as a consequence of their impenetra-
bility. In a granular media at rest under gravity it is enhanced
by the fact that, in order for the system to be stable, each
grain must contact other grains. The following two maxima,
as shown in the inset, appears at r=	3d and r=2d. Both of
them increase with the volume fraction indicating an increas-
ing organization of the packing �not necessarily related to the
formation of ordered structures �24��. A similar dependence
of the secondary peaks of the radial distribution function on
the volume fraction has been observed experimentally by
Aste et al. �24�, who have investigated via x-ray tomography
packs with different densities, and numerically by Silbert et
al. �12�.

B. Voronoï tessellation

In a granular pack of monodispere spheres of volume
fraction � the mean volume occupied by a particle is Vp /�,
where Vp is the volume of a particle. When the system is in
a disordered state there will be both particles occupying a
larger volume and particles occupying a smaller one. It is
therefore instructive to investigate what is the probability
that a given particle occupies a volume v, and how this prob-
ability changes during compaction.

To this end one has to operatively define what is the vol-
ume occupied by a particle: by using the Voronoï tessellation
�as in �24�� we define the volume vi occupied by particle i as
the volume of the convex polyhedron which contains all
points closer to particle i than to any other particle. Figure
7�a� shows the distribution P�v� of the Voronoï volumes of a
system tapped with �0=0.03 s and V=0.2 cm/s, after 1, 10,

100, and 300 taps. These are slightly asymmetric distribu-
tions with exponential tails �Fig. 7�a, inset��. The asymmetry
is a standard feature of the Voronoï distribution: for an ideal
gas in one dimension, for instance, P�v��v	2�1−	�v, where
the Voronoï volume v of a given atom is half of the distance
between its left and right nearest neighbors. As the system
compactifies both the mean value �v� and the standard devia-
tion 
v of the distribution decrease. However, the distribu-
tion retains its functional form: when 
vP�v� is plotted ver-
sus �v− �v�� /
v all of the different curves scale on the same

FIG. 6. �Color online� Radial distribution function for packing
of volume fraction �=0.576, 0.596, and 0.616. As the volume frac-
tion increases we observe a small increment of the peaks at 	3d and
2d, with d=1 cm grain diameter.

FIG. 7. �Color online� �a� Distribution of the Voronoï volumes
in the sample after 1, 10, 100, and 300 taps. As the system com-
pactifies the standard deviation 
v and the mean value �v� of the
distribution decrease. �b� Scaling of the distributions of the Voronoï
volumes shown in panel �a�. The same symbols are used. �c� The
same scaling has been found in MD simulations of a model of
glass-formes by Starr et al. �25�, and is verified by the experimental
data of Aste et al. �24�. However, data from different sources do not
scale on the same master curve.
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master curve, as shown in Fig. 7�b�. This scaling suggests the
existence of a single geometrical structure of the system,
only specified by its volume fraction, and tells us that there
are no dramatic structural changes during compaction.

The same scaling of the distribution of Voronoï volumes
has been observed by Starr et al. �25� in MD simulations of
a glass-forming polymer melt, and is verified by the experi-
mental data on granular packs of Aste et al. �24�. However
the data from these different sources do not scale on the
same muster curve, as shown in Fig. 7�c�. The discrepancy
which may be due to the fact that Ref. �25� investigates a
thermal system, while Ref. �24� investigates a polydisperse
system, needs further investigation.

C. Force distribution

Since the work of Mueth et al. �26� interparticle force
distributions have become a standard tool for the character-
ization of granular packs. There are now experiments, nu-
merical simulations, and theories �see �27� and references
therein� finding an exponential decay at high forces. This
exponential decay is the signal of a heterogeneous structure
of the system: while most of the interparticle normal forces
have magnitude close to the mean value, there are also inter-
particle normal forces of much higher magnitude. Moreover,
these high forces have been shown to be spatially related,
giving rise to the well-known force chains.

We have studied the evolution of the probability distribu-
tion of normal forces during compaction. In order to avoid
the effect of gravity �due to the absence of vertical walls the
mean vertical stress depends on the depth� we have com-
puted the probability distribution of the normal forces be-
tween grains contacting in a point at a height z enclosed in a
thin horizontal slice �z�8 cm and z�10 cm�. Similar results
are observed when selecting different horizontal slices of our
system. Figure 8 shows the force probability distribution af-
ter 1, 10, 100, and 300 taps �corresponding to volume frac-
tions in the range 0.576–0.616�. Since the distributions col-
lapse on the same curve normal forces appear not to be
affected by the density of the system �in the range we have
investigated�. We conclude that the force distribution is

rather insensitive to the density of the granular pack, as also
observed in Ref. �32� and in �33� �where it shows that forces
do not couple with the density for thermal systems near the
glass transition as well�. It should be noted, however, that the
use of the more realistic Herzian �instead of the linear� grain-
grain interaction model �see Sec. II� may change the proper-
ties of the force distribution.

D. Force-volume correlations

The relation between the geometrical structure of the
packing and interparticle forces has been investigated in a
number of previous works �see �27� and references therein�.
Here we report on a relation between the Voronoï volume
associated to a particle and the forces acting on it. To this end
we define the compressional force Ci acting on a particle as

Ci = �
i�j


f�ij
 , �4�

where 
f�ij
 is the normal force of interaction between par-
ticles i and j. Ci measures how much particle i is compressed
as the pressure acting on it is Ci /Si, where Si=4��d /2�2 is
the particle surface. Figure 9 shows that the compressional
force decreases with the Voronoï volume.

A simple explanation of the decreasing of the compres-
sional force with the Voronoï volume can be obtained via the
following argument. Consider two contacting particles at a
distance l. Their interparticle force decreases with l and par-
ticularly in our case, due to the computational model used,
f =k�d− l�, where d is the diameter of a particle. On the other
hand the Voronoï volume v of one of these particles increases
with l. Assuming v� l, one obtains f � �d−v1/�, i.e., a de-
crease of the compressional force with the Voronoï volume.
The data of Fig. 9 are consistent with =3, as expected for
dimensional reasons. However, a reliable estimate of  is
difficult to obtain as Voronoï volumes vary in a small range.

V. GRAIN MOTION

In this section we investigate how a granular pack moves
during a single tap. We consider a system subject to a tap

FIG. 8. �Color online� The distribution of interparticle normal
forces decay exponentially at high forces, it appears to be insensi-
tive to the packing fraction of the system.

FIG. 9. �Color online� The compressional force C of a particle
decreases with its Vornoï volume.
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dynamics with �0=0.03 s and V=0.2 cm/s, and compare the
state reached after the application of n taps with the state
reached after the application of one more tap �with n=1, 10,
100, and 300�.

Particularly we investigate the distribution of particle dis-
placements, the heterogeneity of particle motion, and the cor-
relation between a particle displacement and both its Voronoï
volume and the compressive force acting on it.

A. Particle trajectory and cage motion

Figure 10 shows a typical trajectory of a particle during
compaction. As observed in colloidal systems the trajectory
is characterized by the period of time in which the particle is
confined in cages formed by its neighbors. Cage motion has
also been observed before in experiments of granular mate-
rials subject to continuous vibrations �28� and to shear
�29–31�.

The typical linear size of the cage is roughly 0.05d, where
d=1 cm is the diameter of the particles. A similar ratio be-
tween cage size and particle size has been observed in �35�.
However, there is an important qualitative difference be-
tween the motion of a particle in colloidal suspension and
other glass forming systems and that observed in our system.
In glass forming systems a particle spends most of its time
rattling inside a cage, from which it escapes via infrequent
cage-breaking rearrangements. Here we observe the opposite
behavior: particles usually diffuse, and sometimes they get
trapped in a cage.

This unusual property of the trajectory is put in evidence
by the study of the distribution of the angle  formed by the

displacement �� n of a particle during tap n, and the displace-

ment �� n+1 of the same particle during the following tap.
Figure 11 shows the distribution of

cos�� =
�� n · �� n+1


�� n+1

�� n+1

, �5�

which is strongly peaked near 1. This is a clear indication
that particles usually move along straight lines �as also con-

firmed by Fig. 10�, and that cage motion is negligible: for a
particle rattling in a cage two consecutive displacements
have opposite direction, and cos���−1.

The absence of cage motion is due to the driving mecha-
nism. During a tap the system expands, cages break, and it is
easier for the grains to move one with respect to the other.

B. Particle displacements

Here we investigate the evolution of the distribution of
particle displacements during a single tap. After the applica-
tion of a flow pulse to our system �and the following relax-
ation� a particle i, initially located in r�i, will be in a new

position r�i+�� i, where �� i denotes its displacement. We exam-
ine below the probability that a particle makes a given dis-

placement �� . Due to the presence of gravity, which breaks
the up-down symmetry of the system, it is convenient to
separate the vertical component of the displacement, �zi,
from the horizontal ones, �xi and �yi. As �xi and �yi have
the same, even distribution, we have studied the evolution of
the distribution of �h= 
�x
�
�y
�. In order to follow the dy-
namics of the system, in Fig. 12 we have plotted the prob-
ability distribution of �z, Pz��z� �upper panel�, and of �h,
Ph��h� �lower panel�, during tap number 1, 10, 100, and 300.

During the compaction process displacements with �z
�0 are more probable than those with �z�0. Therefore as
shown in Fig. 12 �upper panel�, Pz��z� is asymmetrical. The
asymmetry of the distribution decreases as the system com-
pactifies and after 300 taps, when stationarity is almost at-
tained, Pz��z� appears to be nearly symmetric. Accordingly
the value of �z where Pz��z� has its maximum increases,
starting from a negative value, until it reaches zero. Also, it
is apparent that as the system compactifies the variance of
the distribution decreases. The probability of a large vertical
displacement to occur is smaller in a dense rather than in a
fluffy system. This is also true for the probability of large
horizontal displacements, as shown in Fig. 12 �lower panel�.

An important feature of the probability of both vertical
and horizontal displacements is the nearly exponential decay

FIG. 10. �Color online� Typical trajectory of a particle during
compaction, followed for 300 taps during compaction �V
=0.2 cm/s, �0=0.03 s�. Circles illustrate that sometimes a particle
is confined in cages formed by its neighbors.

FIG. 11. �Color online� Probability distribution of cos��, where

 is the angle formed by the displacements �� of a particle in two
subsequent taps. The distribution evidences that particles usually
travel along straight lines, and that this tendency increases as the
driving intensity decreases.
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at large displacements. This is an indication of the fact that,
while during a tap most of the particles are subject to small
displacements, very few of them may move much more. We
conclude that the system is characterized by a heterogeneous
dynamics. This is a well-known property of thermal systems,
like liquids or colloids �see �36� for a review�, which appears
upon cooling the system near the glass transition. For in-
stance, in colloidal systems the exponential tail of the par-
ticle displacement distribution has been experimentally ob-
served by Weeks et al. �35�.

The probability distribution function of particles displace-
ments can be further analyzed via the study of the excess
kurtosis

2
�i� =

���i − ��i��2�2

3���i − ��i��4�
− 1, i = h,z , �6�

a comparison between the second and the fourth central mo-
ment of the distribution, which is zero for a Gaussain distri-
bution. We have first considered the excess kurtosis as ob-
tained from the probability of particle displacements in a
single tap: 2

h and 2
z fluctuate from tap to tap, and their

mean values are 2
h=2.8±0.1 and 2

z =4.3±0.2. These posi-
tive values indicate that the probability distribution of par-
ticle displacements is more peaked with respect to a Gauss-
ian distribution. Then, we have considered the excess

kurtosis of the probability distribution of the horizontal and
vertical components of r�i�n�−r�i�n0�, the total displacement of
a grain after tap n0, where n0=100 corresponds to the com-
paction time. As expected from the central limit theorem at
long times this excess kurtosis is zero: Fig. 13 shows, inter-
estingly, that in our system the excess kurtosis approaches
zero with a monotonic decay. This is in sharp contrast with
the observations made in the glass forming system, as in Ref.
�35�, where a peak is observed at the  relaxation time, i.e.,
when cage rearrangements occur. Therefore Fig. 13 confirms
the marginal role played by cage motion in our system.

Our results put in evidence a very smooth behavior of the
particles displacement distribution. Particularly we have not
observed any “rare event” �displacement of the order of 0.4
particle diameters�, recently observed by Ribière and co-
workers �34� in the study of a granular system undergoing
compaction. This is probably due to the different driving
mechanism of the systems. In a shaken system, in fact, grains
move one with respect to the other mainly when the pack
settle downs and a shock wave propagates upwards; in our
system, on the contrary, there is not a shock wave propagat-
ing as grains settle down slowly, and relative grain motion
occurs during the tap.

C. Spatial heterogeneous dynamics

In supercooled liquids and dense colloidal systems the
dynamics is heterogeneous as there are both slow and fast
particles. Moreover, fast particles are known to be spatially
correlated as they appear to form clusters �35–37�. Here we
show that the exact same tendency characterizes a granular
system subject to vertical taps, as suggested in Refs. �38,39�.

In order to characterize the spatially heterogeneous dy-
namics �37,40,41� one usually resorts to a four-point time-
dependent density correlation function and to its fluctuations
�susceptibility�. This latter measures the correlated motion
between pairs of particles. As this motion is decorrelated on
short and long times, the susceptibility shows a well-defined
maximum at a given time. Unfortunately we cannot follow
this line here as many averages are needed in order to get

FIG. 12. �Color online� Probability distribution of vertical ��z,
upper panel� and horizontal ��h, lower panel� displacements of a
grain during the 1st, 10th, 100th, and 300th tap in semilogarithmic
�main panels� and linear �insets� scale.

FIG. 13. �Color online� Time variation of the excess kurtosis of
the probability distributions of the total horizontal �2

h� and vertical
�2

z� displacements of a grain since tap n0=100. The monotonic
decay evidences the marginal role played by cage motion in our
system.
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clear data on the fluctuations, and our simulations are com-
putationally too expensive. Moreover, during compaction the
system is not in a stationary state. In order to measure the
degree of spatally heterogeneous dynamics we have there-
fore used a different method, based on the comparison be-
tween our system and a random one, as discussed below.

We apply k flow pulses �k=1, 10, 100, and 300� to our
system �that reaches volume fraction 0.576, 0.596, 0.612,
and 0.616� and we determine the np particle having experi-
enced the largest displacement during the last tap. Here np

= pN, were N=1600 is the total number of particles, p=1%,
2%, 5%, and 10%. When these fast particles are drawn, as in
Fig. 14, it is apparent that they form clusters, clear evidence
of the spatially heterogeneous dynamics. We have quantified
the degree of heterogeneity of the system as follows. After
every tap we have determined the np faster particles of the
system and determined the number sp of couples of these
particles made of neighboring particles �we consider two par-
ticles to be neighbor if the distance between their center is
smaller than 1.2 particle diameters�. Then we have computed
the same quantity sp

random in the case of np randomly selected
particles of the system. A measure of the degree of spatial
heterogeneous dynamics is given by

�p =
sp − sp

random

sp
random . �7�

Clearly �p�0 for a homogeneous systems, �p�0 if faster
particles form clusters, while �p�0 if faster particles tend to
be apart. Figure 15 shows the evolution of �p with the num-
ber of taps. In all cases �p�0, signaling the presence of a
heterogeneous dynamics. When the system approaches the
steady state, and compaction stops, �p fluctuates around a
plateau which varies with p between 0.5 and 1.5. These are
very high values, indicating a high degree of spatial hetero-
geneity of the system.

D. Volume-displacement correlation

It is well-known than many equilibrium and transport
properties of dense fluids depend on the space available for
molecular motion. For instance, the well-known free volume
theory developed by Choen and Turnbull �42� to explain the
divergence �with a Vogel-Tamman-Fulcher law� of the relax-
ation time of many glass formers as the temperature is de-
creased, is based on the idea that the space available for
molecular motion decreases with the temperature. It is there-
fore interesting to check for correlations between the dis-
placement of a particle and its free volume in our granular
system. There are many possible ways to define the free
volume of a particle. Here we approximate, for simplicity
sake, we consider the free volume of particle i to be Vi

F=vi
−V0, where vi is the Voronoï volume of the particle �see Sec.
IV B� before the application of a tap, and V0=4/3��D /2�3

its volume. The displacement �i of particle i ��i= ��x
2+�y

2

+�z
2�1/2� is the distance between the position of the particle

before and after the application of the tap.
A possible connection between Vi

F and �i is suggested by
the similarity between the probability distribution functions
of Voronoï volumes �see Fig. 7�a��, and that of particles dis-
placemets �Fig. 12�. Both of them have an exponential tail at
high values. Moreover, they evolve in a qualitatively similar
way �the variance and the mean value decrease� as the sys-
tem compactifies.

FIG. 14. Granular compaction is characterized by a spatially
heterogeneous dynamics. After the kth tap �k=1, 10, 100, and 300,
and volume fraction �=0.576, 0.596, 0.612, and 0.616� we plot the
position of the np particles which have experienced the largest dis-
placement during the last tap, with np= pN and p=1%, 2%, 5%, and
10%.

FIG. 15. �Color online� Granular compaction is characterized by
a spatially heterogeneous dynamics. This is quantified by the pa-
rameter �p �see Eq. �7�� which is plotted here as a function of the
number of taps for p=1%, 2%, 5%, and 10% �from top to bottom�.
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In order to test this possible correlation we have com-
puted during the nth tap �n=1, 10, 100, and 300� ��0
=0.03 s, V=0.2 cm/s� the mean value of the displacement �
of all the particles with free volume VF. The dependence of
� on VF is shown in Fig. 16. This figure puts in evidence the
existence of an almost linear correlation between Voronoï
volumes and particle displacements, with �� /�v�0.01/0.2
=0.05 cm−2: the larger the Voronoï volume of a particle, the
bigger its displacement.

E. Force-displacement correlation

In the previous section we have shown that there is a
correlation between the displacement � of a particle during a
single tap, and its free volume. Figure 17 investigates the
correlation between displacement and compression C �see
Eq. �4�� of a particle. The figure puts in evidence that for
small values of the compressional force there is a decreasing
linear relation between displacement and compression of a

particle, while for a higher value of the compressional force
the two become uncorrelated.

VI. CONCLUSIONS

We have reported results of a numerical simulations of a
packing of monosize spheres submitted to vertical taps made
of flow pulses as in the experiment of Ref. �5�. Our results
relative to the dynamics of the systems confirms an earlier
experimental observation: as the intensity of vibration de-
creases both the value of the volume fraction reached at sta-
tionary and the compaction time increases �1,3,5,6,18�. The
increase of the compaction time with the decreasing of the
vibration intensity is dramatic as this appears to diverge with
a power law when the fluid velocity goes to zero.

The analysis of the evolution of several structural quanti-
ties during compaction has revealed that this is not accom-
panied by any particular geometrical modification. The radial
distribution function and the Voronoï volume distribution, for
instance, smoothly change as the density of the granular sys-
tem increases. In particular the collapse of the Voronoï vol-
ume distributions �Sec. IV B� evidences the presence of a
single underlying geometrical structure in the system. Also,
the probability distribution function of normal forces be-
tween grains do not change during compaction.

The analysis of the dynamics of compaction has revealed
that this is characterized by dynamical heterogeneities. The
probability that, during a tap, a particle makes a given dis-
placement decreases exponentially with its size, resembling
observations made in dense colloidal systems �35�. Similarly
we have observed that, during a tap, faster particles tend to
form a cluster, as observed both in colloidal �35� and in
glass-forming �36,37,40� systems. There is, however, a
marked difference between a typical trajectory of a granular
particle during compaction and a typical trajectory of a par-
ticle in supercooled liquids. Precisely, in supercooled liquids
a particle spends most of its time in cages formed by its
neighbors, and occasionally makes large displacement escap-
ing from the cage. In our system, instead, particles usually
diffuse, and sometimes are trapped in a cage. This different
behavior is due to the particular driving of our system as in
our system, when the flow in on the system expands and the
grains are able to escape from their cages.

As the slowdown of the dynamics is related to the space
available for particle motion, we have studied the correlation
between the displacement of particle during a tap and its
Voronoï volume, which is a rough estimate of its free vol-
ume. This analysis has shown that particles with larger
Voronoï volumes are those who make larger displacements
during a tap.
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FIG. 16. �Color online� The mean displacement � of a particle
during a single tap increases with its Voronoï volume v. The dis-
placements are measured during tap 1,10,100, and 300, when the
volume fraction of the system is 0.576,0.596,0.612, and 0.616.

FIG. 17. �Color online� The mean displacement � of a grain as
a function of its compressional force. When the packing is loose
grains with higher compressional forces move less. As the granular
pack compactifies the displacement of a particle appears not to de-
pend on its compression.
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